CAUTION
Read this manual before servicing the snowplow.
This guide has been prepared to assist the trained mechanic in the service of WESTERN® snowplows. It also provides safety information and recommendations. We urge all mechanics to read this manual carefully before attempting to service the WESTERN snowplow equipment covered by this guide.

Service of your WESTERN snowplow equipment is best performed by your local Western Products outlet. They know your snowplow best and are interested in your complete satisfaction.
SAFETY INFORMATION

WARNING
Indicates a potentially hazardous situation that, if not avoided, could result in death or serious personal injury.

CAUTION
Indicates a situation that, if not avoided, could result in damage to product or property.

NOTE: Identifies tips, helpful hints and maintenance information the owner/operator should know.

BEFORE YOU BEGIN

WARNING
Lower blade when vehicle is parked. Temperature changes could change hydraulic pressure, causing the blade to drop unexpectedly or damaging hydraulic components. Failure to do this can result in serious personal injury.

WARNING
Do not exceed GVWR or GAWR including blade and ballast. The rating label is found on the driver-side vehicle door cornerpost.

Please become familiar with and make owners knowledgeable of the Warning and Instruction labels on the back of the blade!

WARNING
LOWER BLADE WHEN VEHICLE IS PARKED.
REMOVE BLADE ASSEMBLY BEFORE PLACING VEHICLE ON HOIST.
DO NOT EXCEED GVWR OR GAWR INCLUDING BLADE AND BALLAST.

CAUTION
READ OWNER’S MANUAL BEFORE OPERATING OR SERVICING SNOWPLOW.
TRANSPORT SPEED SHOULD NOT EXCEED 45 MPH.
REDUCE SPEED UNDER ADVERSE TRAVEL CONDITIONS.
PLOWING SPEED SHOULD NOT EXCEED 10 MPH.
SEE YOUR SALES OUTLET FOR APPLICATION RECOMMENDATIONS.

ON
OFF
ON
OFF

Instruction Label

Warning and Caution Label

ULTRA-MOUNT INSTRUCTIONS

MOUNTING PLOW (ON) Read Owner's Manual for complete instructions.

REMOVING PLOW (OFF) Read Owner's Manual for complete instructions.

WARNING
LOWER BLADE WHEN VEHICLE IS PARKED.
REMOVE BLADE ASSEMBLY BEFORE PLACING VEHICLE ON HOIST.
DO NOT EXCEED GVWR OR GAWR INCLUDING BLADE AND BALLAST.

CAUTION
READ OWNER’S MANUAL BEFORE OPERATING OR SERVICING SNOWPLOW.
TRANSPORT SPEED SHOULD NOT EXCEED 45 MPH.
REDUCE SPEED UNDER ADVERSE TRAVEL CONDITIONS.
PLOWING SPEED SHOULD NOT EXCEED 10 MPH.
SEE YOUR SALES OUTLET FOR APPLICATION RECOMMENDATIONS.

STEP 1
After lowering plow horns in receiver brackets, pull handle up; shoe will lift off the ground.

STEP 2
Push down top of blade; blade will be on the ground. Repeat steps 2 and 3 on other side of plow. Back vehicle away.

STEP 3
Plug in electrical connections. Repeat steps 1 and 2 on other side of plow.

Handle
Shoe
Receiver Pin
Stand Hook

Please become familiar with and make owners knowledgeable of the Warning and Instruction labels on the back of the blade!
SAFETY INFORMATION

BEFORE YOU BEGIN (continued)

• Park the vehicle on a level surface, place shift lever in PARK or NEUTRAL and set parking brake.
• Leave the snowplow mounted on the vehicle and lowered for most service procedures, unless told otherwise.

PERSONAL SAFETY

• Wear only snug-fitting clothing while working on your vehicle or snowplow.
• Do not wear jewelry or a necktie, and secure long hair.
• Be especially careful near moving parts such as fan blades, pulleys and belts.
• Wear safety goggles to protect your eyes from battery acid, gasoline, dirt and dust.
• Avoid touching hot surfaces such as the engine, radiator, hoses and exhaust pipes.
• Always have a fire extinguisher handy, rated BC for flammable liquids and electrical fires.

VENTILATION

• If you work on the vehicle or snowplow in a garage or other enclosed area, be sure to vent exhaust gas directly to the outside through a leakproof exhaust hose.

HYDRAULIC SAFETY

• Always inspect hydraulic components and hoses before using. Replace any damaged or worn parts immediately.
• If you suspect a hose leak, DO NOT use your hand to locate it. Use a piece of cardboard or wood.
• Always loosen plugs, fittings and valves slowly to bleed off any residual pressure.

BATTERY SAFETY

• Always have a fire extinguisher handy, rated BC for flammable liquids and electrical fires.

• Remove blade assembly before placing vehicle on hoist.

• Vehicle exhaust contains deadly carbon monoxide (CO) gas. Breathing this gas, even in low concentrations, could cause death. Never operate a vehicle in an enclosed area without venting exhaust to the outside.

• Hydraulic oil under pressure could cause skin injection injury. If you are injured by hydraulic oil, get medical attention immediately.

• Gasoline is highly flammable and gasoline vapor is explosive. Never smoke while working on vehicle. Keep all open flames away from gasoline tank and lines. Wipe up any spilled gasoline immediately.

• Batteries contain sulfuric acid which burns skin, eyes and clothing.

• Batteries normally produce explosive gases which can cause personal injury. Therefore, do not allow flames, sparks or lit tobacco to come near the battery. When charging or working near a battery, always cover your face and protect your eyes, and also provide ventilation.

• Disconnect the battery before removing or replacing any electrical components.

• Always inspect hydraulic components and hoses before using. Replace any damaged or worn parts immediately.
• If you suspect a hose leak, DO NOT use your hand to locate it. Use a piece of cardboard or wood.
• Always loosen plugs, fittings and valves slowly to bleed off any residual pressure.

• Be careful when using gasoline. Do not use gasoline to clean parts. Store only in approved containers away from sources of heat or flame.

• Always have a fire extinguisher handy, rated BC for flammable liquids and electrical fires.
PRODUCT SPECIFICATIONS

FloStat® SYSTEM SPECIFICATIONS

**CAUTION**
Do not mix different types of hydraulic fluid. Some fluids are not compatible and may cause performance problems and product damage.

Hydraulic System

**Hydraulic Oil**
- WESTERN® High Performance Fluid to -25°F (-32°C)
- Automatic Transmission Fluid (ATF) DEXRON® III to -10°F (-23°C) or,
- Texaco 1537 Aircraft Hydraulic Oil for temperatures below -25°F (-32°C).

Fluid Capacity – Hydraulic Oil
- Unit Reservoir = 1 3/4 Quarts
- System Total:
  w/ 10” Ram = 2-3/8 to 2-3/4 Quarts: Standard & Pro
- Solenoid Valve Spool Travel = 0.07” for three- and four-way valves (S2, S3)

Electrical System – approximate values:
- Solenoid Valve Coil Resistance = 6.7 Ohms at room temperature
- Solenoid Valve Coil Amp. Draw = 1.5 Amp.

**Mechanical**

<table>
<thead>
<tr>
<th>Fastener Torque in IN–LB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump Cap Screws .......... 150 – 160</td>
</tr>
<tr>
<td>Motor Terminal Nuts........ 50 – 60</td>
</tr>
<tr>
<td>Motor to Manifold Cap Screws .................. 30 – 40</td>
</tr>
<tr>
<td>Reservoir Screws ........... 15 – 20</td>
</tr>
<tr>
<td>Valve Cartridges ............ 115 – 125</td>
</tr>
<tr>
<td>Coil Nuts........................ 48 – 60</td>
</tr>
<tr>
<td>Cartridge / Coil Cover Screws .................. 15 – 20</td>
</tr>
<tr>
<td>O-ring Boss Plug ............ 60 – 70</td>
</tr>
</tbody>
</table>

**Tools Required for servicing the electrical and hydraulic systems:**
- Long/Slender Needle Nose Pliers
- Flat Screwdriver
- Sockets and Combination Wrenches: 3/8” thru 7/8”, 1-1/16”, 1-1/8”, 2-3/16”
- 2-3/16” open end wrench
- Deep Socket: 7/8”
- 1/4” Socket or Nut Driver
- 12 V Test Light
- Torque Wrench (in-lb)
- Allen Wrench Set
- Digital Volt/Ohm Meter
- Pencil Magnet

<table>
<thead>
<tr>
<th>Plow Type</th>
<th>Crossover Relief Valve Pressure (± 100 PSI)</th>
<th>No. of Turns Crossover Relief Valve Is Backed Off (CCW) From Fully Seated*</th>
<th>Pump Relief Valve Pressure (± 50 PSI)</th>
<th>No. of Turns Pump Relief Valve Is Backed Off (CCW) From Fully Seated*</th>
<th>Max. Motor Amp Draw At Relief Pressure**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard, Pro, PRO PLUS™</td>
<td>4000</td>
<td>1-1/4 – 1-1/2</td>
<td>1750</td>
<td>2-1/2 – 2-3/4</td>
<td>200</td>
</tr>
</tbody>
</table>

* Settings are approximate.
** Actual readings may vary due to vehicle battery voltage and oil temperature.

Lit. No. 27097  June 15, 2003

DEXRON is a trademark of General Motors Corporation.
Use the following procedure to install SAE O-Ring fittings in valve blocks and rams:

Back off jam nut. Hand tighten fitting into port until washer contacts port face, then back out to position. Using two wrenches, hold fitting body in position and tighten jam nut until the washer again contacts port face, then tighten additional 1/8 to 1/4 turn to lock fittings in place. Final torque on the jam nut should be approximately 20 ft.-lbs.

Use the following procedure to install hydraulic hoses:

Using two wrenches, hold the hose in position and tighten flare nut 1/8 to 1/4 turn beyond hand tight. Final torque on the flare nut should be approximately 20 ft.-lbs.
FloStat® HYDRAULIC UNIT PARTS DIAGRAM

- Stand-off Screw
- Cover
- Solenoid Coil
- Coil Nut
- Breather
- Quill
- Early Style Block code G3 and lower **
- Current Style Block code G4 and higher **
- Concave side towards O-Ring
- Relief Valve
- Bypass Check Valve Assembly
- Pickup Tube
- Suction Filter
- O-Ring
- Fill Plug
- Reservoir
- Drain Plug
- Flow Control Valve
- Valve Manifold Block
- Crossover Relief Valve
- Pump Relief Valve
- Poppet Check Valve Kit
- Diffuser Screen

**Read Block Code Here (under valve cover)
NOTE: Breather is located at front of FloStat® hydraulic unit.
RELIEF VALVE IDENTIFICATION AND LOCATION

NOTE: Breather is located at front of FloStat® hydraulic unit.
PILOT-OPERATED (POPPET TYPE) CHECK VALVE IDENTIFICATION AND LOCATION

NOTE: Breather is located at front of FloStat® hydraulic unit.
VEHICLE HARNESS AND VEHICLE CABLE DIAGRAM
OPERATING THE SNOWPLOW

SOLENOID CONTROL

⚠️ WARNING
The driver shall keep bystanders clear of the blade when it is being raised, lowered or angled. Do not stand between the vehicle and the blade, or within 8 feet of a moving blade. A moving or falling blade could cause personal injury.

⚠️ CAUTION
To prevent accidental movement of the blade, always turn the ON/OFF switch to OFF whenever the snowplow is not in use. The control indicator light will turn off.

Turn the vehicle ignition switch to the ON or the ACCESSORY position. Move control ON/OFF switch to the ON position. The control indicator light (red) should light whenever the control ON/OFF switch and the ignition (key) are both turned ON.

CAUTION

Action | Description of Operation
---|---
ON/OFF | Slide the control power switch ON to activate the hydraulic system. Turn the control OFF to lock the blade in place. This will prevent accidental movement of the blade.
Raise | Move the control lever up (forward) to raise the blade to the desired height.
Lower/Float | Move the control lever down (back) to lower the blade and activate the FLOAT mode.
To Cancel FLOAT | The FLOAT mode can be canceled by either momentarily placing the control in the RAISE position, turning the control off or turning the vehicle ignition off. Angling left or right will not cancel float.
Right | Move the control lever right to angle the blade to the right.
Left | Move the control lever left to angle the blade to the left.
OPERATING THE SNOWPLOW

CABCOMMAND HAND-HELD CONTROL

WARNING
The driver shall keep bystanders clear of the blade when it is being raised, lowered or angled. Do not stand between the vehicle and the blade, or within 8 feet of a moving blade. A moving or falling blade could cause personal injury.

CAUTION
To prevent accidental movement of the blade, always turn the ON/OFF switch to OFF whenever the snowplow is not in use. The control indicator light will turn off.

1. Turn the vehicle ignition switch to the ON or the ACCESSORY position. The controller logo area will become illuminated.

2. Press the ON/OFF button on the control. The control indicator light will glow red indicating the control is on. The control indicator light will glow red whenever the control ON/OFF switch and the vehicle ignition switch are both ON.

3. Pressing the LOWER button for 0.75 seconds will engage the FLOAT mode. The control indicator FLOAT light will glow. Cancel the FLOAT mode by momentarily pressing the RAISE button.

Function Time Outs
All control functions, except for LOWER, automatically time out – stop – after a period of time. This is to prevent unnecessary battery drain. The time-out period for the RAISE function is 4.8 seconds, while the angle function is 9.6 seconds.

The control will automatically turn off after being idle for 20 minutes.

Smooth Stop
The control automatically allows the blade to coast to a stop. This results in smoother operation, reduces the shock to the hydraulic system and increases hose and valve life.

WARNING
The driver shall keep bystanders clear of the blade when it is being raised, lowered or angled. Do not stand between the vehicle and the blade, or within 8 feet of a moving blade. A moving or falling blade could cause personal injury.

CAUTION
To prevent accidental movement of the blade, always turn the ON/OFF switch to OFF whenever the snowplow is not in use. The control indicator light will turn off.

1. Turn the vehicle ignition switch to the ON or the ACCESSORY position. The controller logo area will become illuminated.

2. Press the ON/OFF button on the control. The control indicator light will glow red indicating the control is on. The control indicator light will glow red whenever the control ON/OFF switch and the vehicle ignition switch are both ON.

3. Pressing the LOWER button for 0.75 seconds will engage the FLOAT mode. The control indicator FLOAT light will glow. Cancel the FLOAT mode by momentarily pressing the RAISE button.

Function Time Outs
All control functions, except for LOWER, automatically time out – stop – after a period of time. This is to prevent unnecessary battery drain. The time-out period for the RAISE function is 4.8 seconds, while the angle function is 9.6 seconds.

The control will automatically turn off after being idle for 20 minutes.

Smooth Stop
The control automatically allows the blade to coast to a stop. This results in smoother operation, reduces the shock to the hydraulic system and increases hose and valve life.

1. Turn the vehicle ignition switch to the ON or the ACCESSORY position. The controller logo area will become illuminated.

2. Press the ON/OFF button on the control. The control indicator light will glow red indicating the control is on. The control indicator light will glow red whenever the control ON/OFF switch and the vehicle ignition switch are both ON.

3. Pressing the LOWER button for 0.75 seconds will engage the FLOAT mode. The control indicator FLOAT light will glow. Cancel the FLOAT mode by momentarily pressing the RAISE button.

Function Time Outs
All control functions, except for LOWER, automatically time out – stop – after a period of time. This is to prevent unnecessary battery drain. The time-out period for the RAISE function is 4.8 seconds, while the angle function is 9.6 seconds.

The control will automatically turn off after being idle for 20 minutes.

Smooth Stop
The control automatically allows the blade to coast to a stop. This results in smoother operation, reduces the shock to the hydraulic system and increases hose and valve life.

<table>
<thead>
<tr>
<th>Button</th>
<th>Description of Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raise</td>
<td>Press this button to raise the snowplow and to cancel the float mode. NOTE: Snowplow automatically stops raising after 4.8 seconds. To resume raising the snowplow, release the button and press again.</td>
</tr>
<tr>
<td>Lower/Float</td>
<td>Press this button to lower the snowplow. NOTE: After reaching the desired height, release the button. Holding the button down for more than 0.75 seconds activates the float mode, indicated by green FLOAT lamp.</td>
</tr>
<tr>
<td>Cancel Float</td>
<td>Cancel the float mode by momentarily pressing the RAISE button, turning control off, or turning vehicle ignition off. Angling left or right momentarily cancels float.</td>
</tr>
<tr>
<td>Right</td>
<td>Press this button to angle blade to the right.</td>
</tr>
<tr>
<td>Left</td>
<td>Press this button to angle blade to the left.</td>
</tr>
</tbody>
</table>
THEORY OF OPERATION

SNOWPLOW HEADLAMPS
The type of headlamp circuit varies, depending on the make/model/year of vehicle and whether or not it is equipped with Daytime Running Lights (DRLs). The headlamp switching circuit uses two or more relays. When combined with the plug-in headlamp harness, plow light harness and vehicle harness, the relays automatically switch between vehicle and snowplow headlamps as the harness plugs are connected and disconnected.

Vehicles with Daytime Running Lights (DRLs) require a DRL kit which is an additional fused pink wire used in place of the brown wire.

SNOWPLOW PARK/TURN LAMPS
In an ordinary installation, the snowplow Park/Turn lamps are wired in parallel with the corresponding vehicle circuits. Some installations on trucks with clearance lights require an optional Park/Turn Relay Kit which allows the snowplow park lamps to operate directly off the battery, using the vehicle circuit to power only the relay. In either case, the vehicle and snowplow park and turn lamps will operate simultaneously.

The headlamp wiring schematics and electrical information included in this manual are typical for most 1998 and older vehicles. For 1999 and newer vehicles, refer to the snowplow installation instructions or Electrical Schematics Guide.

SNOWPLOW HYDRAULICS
The snowplow hydraulic system performs four blade movement functions. All functions require the vehicle ignition (key) switch to be in the run position and the cab control to be turned on.

The cab control supplies power to the motor relay and the three solenoid cartridge valves in various combinations to direct hydraulic fluid to the snowplow lift and angle cylinders or back to the reservoir.

Raise and angle functions require both the motor and solenoid cartridge valve(s) to activate, while the lower function only requires activation of a solenoid cartridge valve. The motor and valves are deactivated when the cab control button or lever is released. The high amperage motor power circuit is completed through the battery cables when the motor relay is activated. The motor relay and solenoid cartridge valve circuits are low amperage, high side drive, and are completed when the cab control is activated.

Proper operation of the snowplow hydraulic system depends on the vehicle’s ability to provide adequate electrical power. Electrical loads from the snowplow, vehicle and accessories can substantially reduce the vehicle system voltage if the charging system cannot meet the electrical demand. A low voltage condition can cause intermittent snowplow operation because the magnetic field produced in the solenoid cartridge valve coils may not be strong enough to shift the valves. Because of many variables, it is impossible to determine the point at which the system voltage is too low to consistently operate the snowplow. This condition can be difficult to diagnose because the coil magnetism can still be detected and no problem exists in the hydraulic system. Do not overlook the fact that an apparent problem with the snowplow can actually be caused by low voltage in the vehicle electrical system. Consult a vehicle repair manual for electrical system specifications.
The following section contains hydraulic and electrical schematics to help explain how the hydraulic unit performs the different functions. A schematic is an abstract drawing showing the purpose of each of the components in the system. Each component is represented by a graphical symbol. The hydraulic and electrical legends list and describe each of the symbols used in the schematics for this guide.

The first two schematics show a general overview of the complete hydraulic and electrical systems. The remainder of the schematics have been altered to highlight flow of hydraulic oil and electrical current for each function the hydraulic unit performs or flow of electrical current for the snowplow and vehicle lights.

- Bold lines represent the circuit being activated only.
- Shaded components are either activated or shifted from their normal position.

**NOTE:** Left side = Driver side
Right side = Passenger side

### HYDRAULIC LEGEND

- **LINE, WORKING (MAIN)**
- **LINE, PILOT (FOR CONTROL)**
- **LINES JOINING**
- **LINES CROSSING**
- **FLOW, DIRECTION OF HYDRAULIC FLUID**
- **LINE, TO RESERVOIR BELOW FLUID LEVEL**
- **HYDRAULIC PUMP FIXED DISPLACEMENT**
- **CYLINDER**
- **ELECTRIC MOTOR**
- **FILTER, STRAINER DIFFUSER**
- **COMPONENT ENCLOSURE**
- **CHECK VALVE**
- **SPRING**
- **SOLENOID, SINGLE WINDING**
- **PILOT OPERATED (P/O) CHECK VALVE**
- **VALVE, ADJUSTABLE PRESSURE RELIEF**
- **VALVE, FLOW CONTROL, ADJUSTABLE: NON-COMPENSATED**
- **VALVE, TWO POSITION THREE CONNECTION (THREE-WAY) S1**
- **VALVE, TWO POSITION FOUR CONNECTION (FOUR-WAY) S3**

### ELECTRICAL LEGEND

- **CROSSING WIRE**
- **WIRE SPLICE**
- **IN LINE CONNECTOR**
- **RING TERMINAL**
- **FUSE**
- **SOLENOID**
- **DIODE**
- **CIRCUIT GROUND**
- **MOTOR RELAY**
- **BATTERY**
- **MOTOR**
- **PARK/TURN LAMP**
- **HEADLAMP**
- **COMPONENT ENCLOSURE**

### Wire Color Code

<table>
<thead>
<tr>
<th>Wire Color Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLK</td>
<td>Black</td>
</tr>
<tr>
<td>BLK/ORN</td>
<td>Black/Orange</td>
</tr>
<tr>
<td>BLK/RED</td>
<td>Black/Red</td>
</tr>
<tr>
<td>BLK/WHT</td>
<td>Black/White</td>
</tr>
<tr>
<td>BLU</td>
<td>Blue</td>
</tr>
<tr>
<td>BLU/ORN</td>
<td>Blue/Orange</td>
</tr>
<tr>
<td>BRN</td>
<td>Brown</td>
</tr>
<tr>
<td>BRN/GRN</td>
<td>Brown/Gray</td>
</tr>
<tr>
<td>BRN/RED</td>
<td>Brown/Red</td>
</tr>
<tr>
<td>DKBLU</td>
<td>Dark Blue</td>
</tr>
<tr>
<td>DKBLU/ORN</td>
<td>Dark Blue/Orange</td>
</tr>
<tr>
<td>DKBLU/WHT</td>
<td>Dark Blue/White</td>
</tr>
<tr>
<td>GRN</td>
<td>Green</td>
</tr>
<tr>
<td>GRY</td>
<td>Gray</td>
</tr>
<tr>
<td>LTBLU</td>
<td>Light Blue</td>
</tr>
<tr>
<td>LTBLU/ORN</td>
<td>Light Blue/Orange</td>
</tr>
<tr>
<td>LTBLU/WHT</td>
<td>Light Blue/White</td>
</tr>
<tr>
<td>ORN</td>
<td>Orange</td>
</tr>
<tr>
<td>ORN/BLK</td>
<td>Orange/Black</td>
</tr>
<tr>
<td>PNK</td>
<td>Pink</td>
</tr>
<tr>
<td>PUR</td>
<td>Purple</td>
</tr>
<tr>
<td>RED</td>
<td>Red</td>
</tr>
<tr>
<td>RED/BLK/ORN</td>
<td>Red/Black/Orange</td>
</tr>
<tr>
<td>RED/TAN</td>
<td>Red/Tan</td>
</tr>
<tr>
<td>RED/VIO</td>
<td>Red/Violet</td>
</tr>
<tr>
<td>RED/WHT</td>
<td>Red/White</td>
</tr>
<tr>
<td>RED/WHT/YEL</td>
<td>Red/White/Yellow</td>
</tr>
<tr>
<td>WHT/YEL</td>
<td>White/Yellow</td>
</tr>
</tbody>
</table>

### Abbreviations

- **DRL** - Daytime Running Lights
- **MTR LRY** - Motor Relay
- **P/T SIG** - Park/Turn Signal

Lit. No. 27097

June 15, 2003
DRL kit not shown.

All relays are shown in the de-energized state.
DRL kit shown.

**NOTE:** All relays are shown in the de-energized state.
RAISE – ELECTRICAL

Blade Movement: Raise
Control: Raise
System Response:

1) By moving control lever or pressing the controller button, the circuit board within the cab control supplies power for the electrical circuits.

2) Electrical current flows through the motor relay, activating the pump motor, and solenoid cartridge valve S3, shifting the spool.

3) Hydraulic oil from the pump flows through the solenoid cartridge valves S3 & S2 and the internal check valve in solenoid cartridge valve S1, and into the lift cylinder causing it to extend.
1) By moving control lever or pressing the controller button, the circuit board within the cab control supplies power for the electrical circuit.

2) Electrical current flows through solenoid cartridge valve S1, shifting the spool.

3) The weight of the plow forces the lift cylinder to retract. The retracting lift cylinder pushes the hydraulic oil through solenoid cartridge valves S1 & S2 & S3, and back to the reservoir.

NOTE: CabCommand hand-held control only – while in FLOAT, angling right or left will temporarily cancel float (turn off solenoid cartridge valve S1) until the angle button is released.
LOWER – HYDRAULIC

VALVE MANIFOLD BLOCK

LIFT

BYPASS CHECK VALVE

QUILL

S1

S2

S3

PS CROSSOVER RELIEF VALVE

DS CROSSOVER RELIEF VALVE

PUMP RELIEF VALVE

BLADE MOVEMENT

<table>
<thead>
<tr>
<th>BLADE MOVEMENT</th>
<th>RAISE</th>
<th>LOWER</th>
<th>ANGLE RIGHT</th>
<th>ANGLE LEFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOTOR</td>
<td>M</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>SV08-2004</td>
<td>S1</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>SV08-31</td>
<td>S2</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>SV08-40</td>
<td>S3</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
</tbody>
</table>
Blade Movement: Angle Right
Control: Right
System Response:

1) By moving control lever or pressing the controller button, the circuit board within the cab control supplies power for the electrical circuit.

2) Electrical current flows through the motor relay, activating the pump motor, and solenoid cartridge valve S2, shifting its spool.

3) Hydraulic oil from the pump flows through the solenoid cartridge valve S3 and the poppet check valve, and into the base end of the left cylinder, causing it to extend.

4) The retracting right cylinder pushes the hydraulic oil out of its base end, through solenoid cartridge valves S2 & S3 back to the reservoir.
**System Response:**

1) By moving control lever or pressing the controller button, the circuit board within the cab control supplies power for the electrical circuit.

2) Electrical current flows through the motor relay, activating the pump motor, and solenoid cartridge valves S3 & S2, shifting both spools.

3) Hydraulic oil from the pump flows through the solenoid cartridge valves S3 & S2, and into the base end of the right cylinder, causing it to extend.

4) Pressure within the hydraulic circuit shifts the spool, opening the poppet check valve.

5) The retracting left cylinder pushes the hydraulic oil out of its base end, through the open poppet check valve and solenoid cartridge valve S3 and back to the reservoir.
ANGLE LEFT – HYDRAULIC

<table>
<thead>
<tr>
<th>BLADE MOVEMENT</th>
<th>RAISE</th>
<th>LOWER</th>
<th>ANGLE RIGHT</th>
<th>ANGLE LEFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOTOR</td>
<td>M</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>SV08-2004</td>
<td>S1</td>
<td>ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SV08-31</td>
<td>S2</td>
<td>ON</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>SV08-40</td>
<td>S3</td>
<td>ON</td>
<td>ON</td>
<td></td>
</tr>
</tbody>
</table>
HOLD IN RAISED POSITION – HYDRAULIC

Blade Movement: Hold in Raised Position
Control: None
System Response:

1) Hydraulic oil is trapped in the lift cylinder by the internal check valve in solenoid cartridge valve S1.
**Blade Movement:** Striking an Object
While Plowing

**Control:** None

**System Response:**

1) Hydraulic oil is trapped in the base end of the cylinders by the relief valves, the poppet check valve and solenoid cartridge valve S2.

2) When the plow contacts an object, the force of the impact increases the hydraulic pressure in the base end of the cylinder. When the pressure exceeds the relief valve pressure setting, the relief valve opens allowing oil flow to the base of the opposite cylinder.
Blade Movement: Striking an Object While Plowing

Control: None

System Response:

1) Hydraulic oil is trapped in the base end of the cylinders by the relief valves, the poppet check valve and solenoid cartridge valve S2.

2) When the plow contacts an object, the force of the impact increases the hydraulic pressure in the base end of the cylinder. When the pressure exceeds the relief valve pressure setting, the relief valve opens allowing oil to flow to the base of the opposite cylinder.
HEADLAMPS – PLOW NOT CONNECTED – 9-PIN (TYPICAL)

DRL kit not shown.

Both high beam and low beam are shown.
DRL kit shown.

3-relay system only.

Both high beam and low beam are shown.
DRL kit not shown.
DRL kit shown.

3-relay system only.
LOW BEAM HEADLAMPS WITH PLOW CONNECTED TO VEHICLE – 9-PIN (TYPICAL)

DRL kit not shown.
LOW BEAM HEADLAMPS WITH PLOW CONNECTED TO VEHICLE – 12 (TYPICAL)

DRL kit shown.

3-relay system only.
Introduction

This guide consists of a series of tables, diagrams, flow charts and other information. When used properly it will assist the mechanic in identifying and repairing malfunctioning system components. Western Products highly recommends the use of the UniMount®/UltraMount® Electrical Tester as a timesaving option for electrical system diagnosis. When using this tester, refer to the supplied instruction manual for proper use of the tester.

Any malfunction of the snowplow can be categorized as either mechanical, electrical or hydraulic. Mechanical issues are generally related to the blade, framework and mount components and are usually identified by visual inspection. Electrical and hydraulic issues can sometimes be difficult to trace to the component level and that is the purpose of this troubleshooting guide.

Read and understand the Theory of Operation before attempting troubleshooting.
How to Use the Troubleshooting Guide

When diagnosing the snowplow electrical and hydraulic systems, many variables need to be eliminated in order to obtain workable test procedures. These variables translate into conditions listed before the tables or flow charts and must be satisfied before proceeding.

If the listed conditions are not met, the procedure can result in inaccurate results and wasted time.

In many cases, satisfying the listed conditions alone will solve the problem.

1. Go to the General Diagnostic Table and satisfy the nine listed conditions. These conditions must be met before proceeding into the table or to any subsequent test.

2. Locate the condition in the table which best describes the problem and check possible causes and actions in the order listed.

3. Proceed to a service procedure, another condition, or a specific test as directed. All tests except the Hydraulic System Test use a flow chart format. To use these flow charts, first satisfy any listed conditions at the top of the page. Then begin at the upper left square and proceed as directed.

4. Follow sequentially through the table and tests, referring to the hydraulic and electrical schematics in the Theory of Operation section and the component Identification and Location diagrams. Eventually the problem will be pinpointed at the component level.

Electrical Testing

Read and understand the Theory of Operation section. A simple 12V test light with a ground lead can be used for circuit testing. When directed to check for 12 volts (12V), ground the test lamp lead and probe the terminal. When asked to check for ground, attach the test lamp lead to +12V and probe the terminal. Note that 12V is a nominal value. If using a voltmeter, actual voltage will vary with the vehicle and presence of loads in tested circuits. Continuity alone does not guarantee a good circuit. Poor connections or damaged wires may have continuity but be unable to carry sufficient current.
GENERAL DIAGNOSTIC TABLE

BEFORE USING THIS GENERAL DIAGNOSTIC TABLE OR PERFORMING ANY TESTS, YOU MUST VERIFY THE FOLLOWING CONDITIONS:

1. Snowplow is attached to vehicle and all harnesses are connected.
2. Harness connector pins and terminals are free of corrosion, insuring good connections, and coated with dielectric grease.
3. Vehicle battery and charging system are in good condition and battery connections are clean and tight.
4. Hydraulic reservoir is filled to filler plug level with recommended fluid, when lift cylinder is fully retracted. See Product Specifications.
5. There are no oil leaks from hoses, fittings, cylinders or the hydraulic unit.
6. All built up snow and ice is removed from the snowplow.
7. 6 amp fuse in vehicle harness is good.
8. Ignition is turned on or engine is running.
9. The control is connected in the cab and turned on.

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>POSSIBLE CAUSE</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor does not run for any requested function.</td>
<td>Poor connections in vehicle or snowplow battery cables.</td>
<td>Clean and re-establish connections.</td>
</tr>
<tr>
<td></td>
<td>Motor worn or damaged or pump seized.</td>
<td>Go to Motor Test.</td>
</tr>
<tr>
<td></td>
<td>Motor relay inoperative.</td>
<td>Go to Motor Relay Test.</td>
</tr>
<tr>
<td></td>
<td>Open circuit in vehicle wiring harness.</td>
<td>Go to Vehicle Harness Test - Motor Relay.</td>
</tr>
<tr>
<td></td>
<td>Malfunctioning controller.</td>
<td>Go to Control Test.</td>
</tr>
<tr>
<td>Motor runs continuously.</td>
<td>Motor relay sticking or always energized.</td>
<td>Go to Motor Relay Test.</td>
</tr>
<tr>
<td></td>
<td>Short circuit in vehicle wiring harness.</td>
<td>Go to Vehicle Harness Test - Motor Relay.</td>
</tr>
<tr>
<td></td>
<td>Malfunctioning controller.</td>
<td>Go to Control Test.</td>
</tr>
<tr>
<td>Snowplow won’t raise – motor runs.</td>
<td>Clogged pump filter (all functions are affected).</td>
<td>Clean or replace filter, flush reservoir.</td>
</tr>
<tr>
<td></td>
<td>Pump relief low. Worn or damaged pump.</td>
<td>Go to Pump Pressure Test.</td>
</tr>
<tr>
<td></td>
<td>Poor connections on battery cables.</td>
<td>Inspect battery cables, clean and re-attach all connections.</td>
</tr>
<tr>
<td>CONDITION</td>
<td>POSSIBLE CAUSE</td>
<td>ACTION</td>
</tr>
<tr>
<td>-----------------------------------------</td>
<td>----------------------------------------------------</td>
<td>---------------------------------------------</td>
</tr>
<tr>
<td>Snowplow won’t raise – motor runs. (cont.)</td>
<td>Solenoid valve coil not activating properly.</td>
<td>Go to Solenoid Coil Activation Test.</td>
</tr>
<tr>
<td></td>
<td>Hydraulic system malfunction.</td>
<td>Go to Hydraulic System Test.</td>
</tr>
<tr>
<td></td>
<td>Malfunctioning controller.</td>
<td>Go to Control Test.</td>
</tr>
<tr>
<td>Snowplow raises slowly or partially – motor runs.</td>
<td>Clogged pump filter (all functions are affected).</td>
<td>Clean or replace filter, flush reservoir.</td>
</tr>
<tr>
<td></td>
<td>Pump relief low. Worn or damaged pump.</td>
<td>Go to Pump Pressure Test.</td>
</tr>
<tr>
<td></td>
<td>Poor connections on battery cables.</td>
<td>Inspect battery cables, clean and re-attach all connections.</td>
</tr>
<tr>
<td></td>
<td>Slow motor RPM</td>
<td>Repair or replace motor.</td>
</tr>
<tr>
<td></td>
<td>Air in lift cylinder</td>
<td>Check diffuser screen. Fully collapse lift cylinder to purge air.</td>
</tr>
<tr>
<td>Snowplow will not lower or lowers slowly, or won’t float.</td>
<td>Quill adjusted in too far.</td>
<td>Adjust quill out.</td>
</tr>
<tr>
<td></td>
<td>Solenoid valve coils not activating properly.</td>
<td>Go to Solenoid Coil Activation Test.</td>
</tr>
<tr>
<td></td>
<td>Hydraulic system malfunction.</td>
<td>Go to Hydraulic System Test.</td>
</tr>
<tr>
<td>Snowplow angles slowly.</td>
<td>Clogged pump filter (all functions are affected).</td>
<td>Clean or replace filter, flush reservoir.</td>
</tr>
<tr>
<td></td>
<td>Pump relief low. Worn or damaged pump.</td>
<td>Go to Pump Pressure Test.</td>
</tr>
<tr>
<td></td>
<td>Poor connections on battery cables.</td>
<td>Inspect battery cables, clean and re-attach all connections.</td>
</tr>
<tr>
<td></td>
<td>Slow motor RPM</td>
<td>Repair or replace motor.</td>
</tr>
<tr>
<td></td>
<td>Air in angle cylinder</td>
<td>Check diffuser screen. Cycle angle functions to purge air.</td>
</tr>
<tr>
<td></td>
<td>Oil bypassing cylinder relief valve.</td>
<td>Go to Relief Valve Inspection and Adjustment.</td>
</tr>
<tr>
<td></td>
<td>Malfunctioning PO check valve.</td>
<td>Go to Pilot Operated Check Valve Test and Inspection.</td>
</tr>
<tr>
<td>Blade will not hold angled position</td>
<td>Air in angle cylinders</td>
<td>Check diffuser screen. Cycle angle functions to purge cylinders.</td>
</tr>
<tr>
<td></td>
<td>Oil bypassing cylinder relief valve.</td>
<td>Go to Relief Valve Inspection and Adjustment.</td>
</tr>
<tr>
<td></td>
<td>Hydraulic system malfunction.</td>
<td>Go to Hydraulic System Test.</td>
</tr>
<tr>
<td>Plow does not perform the selected function or performs a different function.</td>
<td>Hydraulic hose routing incorrect.</td>
<td>Verify correct hose installation. See Hose Routing Diagram.</td>
</tr>
<tr>
<td></td>
<td>Solenoid valve coils not activating properly.</td>
<td>Go to Solenoid Coil Activation Test.</td>
</tr>
<tr>
<td></td>
<td>Hydraulic system malfunction.</td>
<td>Go to Hydraulic System Test.</td>
</tr>
<tr>
<td></td>
<td>Malfunctioning Controller.</td>
<td>Go to Control Test.</td>
</tr>
</tbody>
</table>
### GENERAL DIAGNOSTIC TABLE

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>POSSIBLE CAUSE</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle harness 6 amp fuse blows.</td>
<td>Red wire in vehicle harness is shorted to ground.</td>
<td>Repair wire or replace vehicle harness.</td>
</tr>
<tr>
<td></td>
<td>Motor relay primary coil shorted internally.</td>
<td>Check primary coil with ohmmeter. Replace defective motor relay.</td>
</tr>
<tr>
<td></td>
<td>Solenoid valve coil shorted internally.</td>
<td>Go to individual coil test. Replace shorted coils.</td>
</tr>
<tr>
<td></td>
<td>Motor relay or solenoid coil wires in vehicle harness shorted to ground.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solenoid coil wires in plow harness shorted to ground.</td>
<td>Repair wire or replace plow harness.</td>
</tr>
<tr>
<td></td>
<td>Malfunctioning controller.</td>
<td>Go to Control Test.</td>
</tr>
<tr>
<td>Excessive load on vehicle electrical system while using snowplow.</td>
<td>Poor connections in battery cables.</td>
<td>Inspect battery cables, clean and re-establish all connections.</td>
</tr>
<tr>
<td></td>
<td>Pump relief incorrectly adjusted.</td>
<td>Go to Pump Pressure Test.</td>
</tr>
<tr>
<td></td>
<td>Worn or damaged pump or motor.</td>
<td>Go to Pump Pressure Test/check motor.</td>
</tr>
<tr>
<td>Snowplow headlamps operate irregularly or not at all – snowplow attached.</td>
<td>Burned out bulbs or corroded sockets.</td>
<td>Replace bulbs, clean contacts.</td>
</tr>
<tr>
<td>-or-</td>
<td>Wires improperly connected to relays.</td>
<td>Review and correct wire installation. See Headlamp Test Diagram.</td>
</tr>
<tr>
<td>Vehicle headlamps operate irregularly or not at all – snowplow removed.</td>
<td>Headlamp relay inoperative.</td>
<td>Go to Plow Headlamp Test or Vehicle Headlamp Test.</td>
</tr>
<tr>
<td>Vehicle daytime running lamps (DRLs) do not work – snowplow removed. ('98 and older vehicles)</td>
<td>Parking brake on. Or see vehicle Owner’s Manual for Proper Operation.</td>
<td>Fully release parking brake.</td>
</tr>
<tr>
<td></td>
<td>Power in DRL circuit has been interrupted.</td>
<td>Turn lamp and/or ignition switch on and off to cycle the DRL circuitry.</td>
</tr>
<tr>
<td></td>
<td>No output from DRL module.</td>
<td>Repair vehicle electrical system.</td>
</tr>
<tr>
<td>Snowplow Park or Turn lamps operate intermittently or not at all – snowplow attached.</td>
<td>Burned out bulb, corroded socket(s) or poor electrical connection.</td>
<td>Replace bulbs/clean contacts. If necessary, go to Park/Turn Lamp test.</td>
</tr>
</tbody>
</table>
HYDRAULIC RAMS–INSPECTION AND REPAIR

General

The lift and angling rams use a gland nut with rod seal and o-ring instead of a packing set and adjustable packing nut. The gland nut is torqued onto the cylinder coupling and requires no adjustment. Periodically inspect rams for leakage. A slight amount of oil weep along the rod is normal and may leave an oil film around the gland nut. If oil is dripping off the gland nut or the wiper is extruded or folded in, the ram should be repaired.

Disassembly

1. Lower blade to ground and turn off vehicle ignition.
2. Before removing ram from snowplow, break gland nut loose with a 2-3/16 open-end wrench. If a pipe wrench must be used, set jaws squarely against flats of nut and apply steady force. Gland nut break-loose torque usually exceeds 200 ft-lb.
3. Remove ram and collapse to drain oil.
4. Remove gland nut and rod as an assembly. Remove split bearing and spacer and slide gland nut off bearing end of rod.
5. Remove o-ring, wiper, and seal from gland nut and discard them. Avoid scratching or damaging o-ring, wiper, and seal grooves.
6. Check screen in ram base for contaminants. Wash out and identify any foreign material to determine if further corrective action is needed.

CAUTION

If plow is not attached to vehicle, install support blocking under 1-1/2" round cross tube at rear of lower lift frame before removing lift ram or lift chains.
**HYDRAULIC RAMS–INSPECTION AND REPAIR**

**Inspection**

1. Cylinder wall should be straight and free of any deep gouges or displaced material. O-ring chamfer and coupler end surface should be clean and smooth.

2. Split bearing sections and spacer should be free of burrs and sharp edges.

3. Check rod for rust or nicks that can damage the seal.

4. Gland nut o-ring, wiper, and seal grooves must be clean, smooth, and free of burrs. If o-ring flange is cracked or broken, replace gland nut.

**Assembly**

1. Always use a new seal, wiper and o-ring. Lubricate with clean hydraulic oil and assemble by hand to avoid seal damage. Be sure seal lip is toward the inside of the cylinder and the o-ring “spring” inside the seal remains in position. Follow instructions in the seal kit.

2. Lubricate bearing end of rod and insert into wiper end of gland nut. Press nut onto rod by hand, making sure the outer lip of the wiper does not fold in. Never slide nut over pin end of rod; this will damage the seal. Slide nut to middle of rod.

3. Assemble spacer and split bearing. Hold rod vertically so spacer holds bearing and assemble to cylinder. Tighten gland nut to 150-180 ft-lb. If a socket and torque wrench are not available, tighten nut by hand against a .012 feeler gauge between coupler and nut flange, remove gauge and tighten nut an additional 1/4 turn. This procedure is best accomplished with ram installed on plow.

4. Reinstall ram. For angle ram, align fitting 20° to the rear of vertical when ram is horizontal. For lift ram, with fitting to rear, align fitting to passenger side. See section on installing fittings and hoses for proper procedure.

5. Activate blade several times and fully collapse lift ram manually to remove air. Refill reservoir.
WARNING

The driver shall keep bystanders clear of the blade during this test. Do not stand between the vehicle and the blade. A moving or falling blade could cause personal injury.

Refer to the Motor and Motor Relay Test Diagram on following page.

**MOTOR TEST**

Momentarily attach jumper cables from the battery to respective (+) and (-) motor terminals. Does motor run?

YES

Retest with jumper cable from battery (+) to (+) motor terminal. Does motor run?

YES

Momentarily attach (+) jumper cable between battery and motor side of motor relay secondary. Does motor run?

YES

Go to Motor Relay Test.

NO

Check for binding in pump. Replace pump, or repair or replace motor.

NO

Repair ground (black) wire in vehicle or plow battery cable.

NO

Repair positive (black/red) wire in vehicle battery cable or plow battery cable.
MOTOR AND MOTOR RELAY TEST DIAGRAM

Motor Terminal (-)

Motor Terminal (+)

Black/Orange Wire to Headlamp Harness

Large Black Wire

Large Black/Red Wire

Motor Relay Secondary Terminals

Orange/Black Wire

Red Cable

To Vehicle Harness

Black Wire

Black/Red Wire

Vehicle Battery Cable

Plow Battery

Motor Relay Primary Terminals

Orange/Black Wire

Brown/Red Wire
MOTOR RELAY TEST

1. Momentarily jump power and ground directly from battery to motor to verify that the motor runs. Make final connection at the motor.

2. Refer to the Motor and Motor Relay Test Diagram (page 45), and Vehicle Harness and Vehicle Cable Location Diagram (page 12.)

### WARNING
The driver shall keep bystanders clear of the blade during this test. Do not stand between the vehicle and the blade. A moving or falling blade could cause personal injury.

**Motor does not run:**

- Momentarily attach a jumper cable across the motor relay secondary terminals. Does motor run?
  - NO → Repair or replace red (+) cable from battery to motor relay.

  YES → Attach a jumper wire from battery (+) to motor relay primary terminal with brown/red wire. Does motor run?
    - NO → Leave (+) jumper wire attached and attach a ground jumper wire from battery (-) to relay primary terminal with black/orange or orange/black wire. Does motor run?
      - NO → Repair or replace orange/black wire between motor relay and battery (-).
      - YES → Go to Vehicle Harness Test - Motor Relay. If OK, go to Control Test.
    - YES → Go to Vehicle Harness Test - Motor Relay. If OK, go to Control Test.

**Motor runs continuously:**

- Disconnect brown/red wire from motor relay primary terminal. Does the motor stop?
  - NO → Replace motor relay.

  YES → Verify correct polarity of cables from battery to motor.
    - NO → Reverse leads or replace cable if manufactured incorrectly.
    - YES → Go to Control Test.
VEHICLE HARNESS TEST – MOTOR RELAY

1. Perform the Motor Test and Motor Relay Test first.
2. Disconnect the control in the cab.
3. Refer to the 6-Pin Connector diagram. Test the vehicle side of the connector in the cab as follows.

**WARNING**
The driver shall keep bystanders clear of the blade during this test. Do not stand between the vehicle and the blade. A moving or falling blade could cause personal injury.

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Wire Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Red</td>
</tr>
<tr>
<td>2</td>
<td>Lt Green</td>
</tr>
<tr>
<td>3</td>
<td>Orange/Black</td>
</tr>
<tr>
<td>4</td>
<td>Brown/Red</td>
</tr>
<tr>
<td>5</td>
<td>Lt Blue</td>
</tr>
<tr>
<td>6</td>
<td>White/Yellow</td>
</tr>
</tbody>
</table>

Is there 12V at socket #1?

- **YES** Install a jumper wire between sockets #1 and #4. Does motor run?

  - **YES** Remove jumper wire. Go to Control Test.
  
  - **NO** Brown/red wire to motor relay is open. Repair wire or replace harness.

- **NO** Verify vehicle power source and 6 amp fuse in red wire. Repair red wire or replace harness.
CONTROL TEST

Test Procedure for Hand-Held or Solenoid Control

1. Disconnect the control in the cab and remove to work bench.

2. Refer to the 6-Pin Connector diagram and the chart.

3. Using a 12V power source with a 6 amp fuse in the positive lead, carefully apply +12V to pin #1 and ground to pin #3 of the 6-Pin connector.

4. Turn the control on. Power indicator lamp should be lit. Using a grounded test light, check for 12V at each of pins #2, 4, 5, 6 when the control is activated for each function. Footnotes in the chart indicate special conditions of control operation.

5. Compare the control outputs for all functions with the chart and proceed to the flow chart on the following page.

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Purpose</th>
<th>Angle Right (c)</th>
<th>Angle Left (c)</th>
<th>Raise (d)</th>
<th>Lower/Float (e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12V Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>S2 Output (3-Way)</td>
<td>ON</td>
<td>ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Ground</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Motor Relay Output</td>
<td>ON (b)</td>
<td>ON (b)</td>
<td>ON (b)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>S3 Output (4-Way)</td>
<td>ON</td>
<td></td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>S1 Output (2-Way)</td>
<td>(a)</td>
<td>(a)</td>
<td></td>
<td>ON</td>
</tr>
</tbody>
</table>

a. S1 output will be ON if control is in float. Activate raise function to cancel float. If hand-held control is in float, S1 output will turn off while angle button is pressed and on when the button is released.

b. For hand-held control, motor relay output turns off before solenoid coil outputs when button is released.

c. For hand-held control, outputs turn off after button is held for approximately 9.6 seconds.

d. For hand-held control, outputs turn off after button is held for approximately 4.8 seconds.

e. Solenoid control activates S1 output in float when lever is moved to lower position. Hand-held control activates float when lower button is held for .75 second.
CONTROL TEST

Do control outputs match chart for all functions?

No

Solenoid Control: replace PCB or control assembly

Hand-Held Control: follow handling instructions. Remove handle half. Is the white cord connector fully seated on the PCB?

Yes

Control is OK. Verify vehicle harness ground and power source for red wire.

No

Carefully disconnect white cord connector from PCB. Test the cord for continuity according to electrical schematics. Note internal connection in the cord. Does continuity match schematic?

Yes

Seat the cord connector fully on the PCB. Retest Control.

No

Replace PCB

Replace coil cord

To Safely Handle Hand-Held PCB:

CAUTION

Printed circuit board (PCB) is subject to damage from static electricity. Follow instructions below to safely handle PCB.

1. Disconnect the control in the cab and remove to a workbench.

2. Place control on its left side and remove right side of handle, leaving the keypad/circuit board assembly in left half.

3. Touch hand to any grounded metal object to discharge possible static buildup.

4. Remove keypad/circuit board assembly from housing by only touching the edges of the keypad/circuit board assembly.

5. The keypad/circuit board assembly can be handled safely as long as contact with it is maintained.

NOTE: For hand-held control, poor ground connections or high or low voltage will shut the control off.
1. Lower blade to the ground, place control in FLOAT mode, and fully collapse the lift ram.

2. Carefully disconnect either angle hose from the angle ram 90° fitting and install Pressure Testing Kit #56679 according to kit instructions or refer to FloStat® Hydraulic Hose Routing and Fitting Installation instructions on page 7.

3. Route the end of the hose with gauge up to the headlamp crossbar and secure prior to testing.

4. Tighten hydraulic fittings to proper torque as described on page 7.

5. Activate the appropriate angle function with the control and read the pump relief pressure when the blade is fully angled.

6. Refer to the illustration for pump relief valve location. Adjust pump pressure according to chart value. Do not adjust relief valve while motor is running.

7. Proceed to the flow chart on the following page.

### WARNING
The tester shall keep bystanders clear of the blade during this test. Do not stand between the vehicle and the blade. A moving or falling blade could cause personal injury.

### PUMP PRESSURE TEST

<table>
<thead>
<tr>
<th>Plow Type</th>
<th>Maximum Motor Amp Draw At 11.2 Volts w/Warm Oil</th>
<th>Pump Relief Valve Pressure (± 50 PSI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard, Pro, PRO PLUS™</td>
<td>200</td>
<td>1750</td>
</tr>
</tbody>
</table>
1. Be sure motor is in good condition.

- Does pump relief pressure match value on chart? NO
  - Is motor amp draw greater than chart value when pump at specified relief pressure? YES
    - Repair or replace motor.
  - Is the pump pressure zero? NO
    - Turn pump pressure relief screw clockwise to increase pressure. Can pressure be adjusted to chart value? YES
      - Go to Cartridge Coil Activation Test. Repair as necessary and re-check pump pressure.
      - Inspect Pump Relief Valve. (Same as Crossover Relief Valve Inspection). Repair as necessary. Can pressure now be adjusted to chart value? YES
        - Adjust Pump Pressure to Chart Value
        - Inspect pump O-ring beneath pump. Replace if damaged. Can the pressure now be adjusted to chart value? YES
          - Replace pump.
      - NO
    - NO
    - Go to Hydraulic System Test.
- NO

Adjust Pump Pressure to Chart Value
CARTRIDGE COIL ACTIVATION TEST

1. Disconnect the black/red (+) battery cable from the motor and isolate it.

2. Remove solenoid valve cover.

3. Verify wires are properly attached to solenoid coils. Refer to Wire Connection Table, Electrical Schematic, and Solenoid Cartridge Valve Identification and Location.

4. Activate the control for each function and check for magnetic pull at all three solenoid valve coils. Only the coils designated as "ON" in the table should activate for each function. After noting which coils are energized, proceed to the flow chart.

Cartridge Coil Wiring and Activation – Wire Connection Table

<table>
<thead>
<tr>
<th>Solenoid Coil</th>
<th>Plow Harness Pin</th>
<th>Wire Color</th>
<th>Angle Right</th>
<th>Angle Left</th>
<th>Raise</th>
<th>Lower</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 (2-Way)</td>
<td>1</td>
<td>White/Yellow</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>ON</td>
</tr>
<tr>
<td>S2 (3-Way)</td>
<td>3</td>
<td>Light Green</td>
<td>ON</td>
<td>ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3 (4-Way)</td>
<td>4</td>
<td>Light Blue</td>
<td>ON</td>
<td>ON</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*S1 output will be "ON" for all functions if control is in "FLOAT". Activate "RAISE" function to cancel "FLOAT". Hand Held Control Only – While in "FLOAT", pressing and holding the "RIGHT" or "LEFT" button will turn off the solenoid cartridge valve S1 until the button is released.

Do activated coils match the chart for all functions?

YES → Go to Hydraulic System Test.

NO → Verify battery cables are connected. Is there ground at all black/orange wires attached to coils?

YES → Disconnect 9- or 12-pin harness at front of vehicle. Apply 12V to the white/yellow, light blue and light green wires at coils S1, S2 and S3. Does each coil activate?

YES → Apply 12V to pins #1,3 and 4 of the plow harness connector. Do the respective coils activate according to the chart?

YES → Go to Vehicle Harness Test for Cartridge Coils.

NO → Repair black/orange wires to coils, check ground connections at motor, battery cable connector and battery (-) terminal. Retest.

NO → Go to Individual Coil Test. Replace open coils.

NO → Go to Vehicle Harness Test for Cartridge Coils.

Respective wire is open or has bad connection. Repair wire or replace plow harness.
VEHICLE HARNESS TEST – CARTRIDGE COILS

1. Disconnect the black/red (+) battery cable from the motor and isolate it.
2. Perform Cartridge Coil Activation Test.
3. Connect all harness connectors at the front of the vehicle.
4. Refer to the 6-Pin Connector diagram for socket location.

Is there ground at socket #3?

YES

NO

Orange/black wire is open between connector and motor relay or battery (-). Repair wire or replace harness.

Is there 12v at socket #1?

YES

NO

Verify 6 amp fuse and red wire connection to vehicle circuit. Repair wire or replace harness. Replace fuse as needed.

Is there 12v at socket #1?

YES

NO

Attach a jumper wire between terminal #1 and terminals #6. Does solenoid coil S1 activate? Repeat process between terminal #1 and #2, and between terminal #1 and terminal #5. Do solenoid coils S2 and S3 activate respectively?

YES

NO

Go to Control Test

Corresponding wire is open or has poor connection. Repair wire or replace vehicle harness.

White 6-Pin Connector on vehicle harness—located in cab (end view)

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Wire Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Red</td>
</tr>
<tr>
<td>2</td>
<td>Lt Green</td>
</tr>
<tr>
<td>3</td>
<td>Orange/Black</td>
</tr>
<tr>
<td>4</td>
<td>Brown/Red</td>
</tr>
<tr>
<td>5</td>
<td>Lt Blue</td>
</tr>
<tr>
<td>6</td>
<td>White/Yellow</td>
</tr>
</tbody>
</table>

(sockets)
HYDRAULIC SYSTEM TEST

This test consists of trying all the plow functions and comparing the plow reaction to the action requested in the following table. The table will pinpoint a solenoid valve or poppet check valve problem accurately if only one component is malfunctioning. If the plow reaction for a given function is not listed in the table, there may be a crossover relief or poppet check valve which is stuck open or contaminated, missing or damaged O-rings or backing rings on cartridge, crossover relief or poppet check valve spool, or there may be two or more malfunctioning components. In this case, use the specific function hydraulic schematic and carefully inspect each component in the flow circuit. If contamination is evident in more than one component, the hydraulic unit, hoses and cylinders must be completely disassembled, inspected and cleaned.

1. Perform Cartridge Coil Activation Test first.
2. Verify hydraulic hose installation is correct. Refer to the Hose Routing diagram.
3. Test all of the plow functions.
4. Inspect and clean or replace the suspected component. Refer to the Hydraulic Parts Diagram -page 8.
5. Refer to the sections following the table for inspection and adjustment of solenoid cartridge valves, poppet check valve and crossover relief valves.

**IMPORTANT:** When testing the plow functions, be sure the control is *not in “float.”*

<table>
<thead>
<tr>
<th>ACTION REQUESTED</th>
<th>PLOW REACTION</th>
<th>POSSIBLE CAUSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raise</td>
<td>None</td>
<td>S3 not shifted</td>
</tr>
<tr>
<td></td>
<td>Angle Left</td>
<td>S2 stuck shifted</td>
</tr>
<tr>
<td>Lower</td>
<td>None</td>
<td>S1 not shifted</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S2 stuck shifted</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S3 stuck shifted</td>
</tr>
<tr>
<td>Angle Right</td>
<td>Angle Left</td>
<td>S3 stuck shifted</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>S2 not shifted</td>
</tr>
<tr>
<td></td>
<td>Slow</td>
<td>Poppet check valve not opening</td>
</tr>
<tr>
<td>Angle Left</td>
<td>Angle Right</td>
<td>S3 not shifted</td>
</tr>
<tr>
<td></td>
<td>Raise</td>
<td>S2 not shifted</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>S2 and S3 not shifted</td>
</tr>
<tr>
<td></td>
<td>Slow</td>
<td>Poppet check valve not opening</td>
</tr>
<tr>
<td>None (blade raised)</td>
<td>Lowers</td>
<td>S1 stuck shifted or has leaking internal check valve</td>
</tr>
<tr>
<td>None</td>
<td>Drifts Right</td>
<td>S2 stuck shifted</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contamination, bad valve stem seat, or damaged O-rings in crossover relief valve</td>
</tr>
<tr>
<td></td>
<td>Drifts Left</td>
<td>Poppet check valve open</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contamination, bad valve stem seat, or damaged O-rings in crossover relief valve</td>
</tr>
</tbody>
</table>
CROSSOVER RELIEF VALVE INSPECTION AND ADJUSTMENT

Crossover Relief Valve Inspection

1. Remove the valve stem, ball, spacer and spring.
2. Look for broken or damaged parts, contamination or missing or damaged O-rings. Check valve stem seat for excessive wear.

⚠️ CAUTION
Be careful to strike the stem squarely. You can bend the stem if you do not strike it squarely.

3. If parts are in good condition, place ball on hard wood block, hold stem seat on ball, and strike stem lightly with a hammer. This will re-conform the seat to the ball.
4. Apply a light coat of anti-seize or grease to stem threads. Lubricate O-ring with hydraulic fluid. Reassemble components into valve block.

Adjustment

1. Adjust by tightening the relief valve stem until it bottoms out (until spring is fully compressed).
2. Back off valve stem (rotate counterclockwise) the number of turns indicated in the Crossover Relief Valve Settings chart.

Crossover Relief Valve Settings

<table>
<thead>
<tr>
<th>Plow Type</th>
<th>No. of Turns Backed Off (CCW) From Fully Seated*</th>
<th>Crossover Relief Valve Pressure (± 100 PSI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard, Pro, PRO PLUS™</td>
<td>1-1/4 – 1-1/2</td>
<td>4000</td>
</tr>
</tbody>
</table>

* Settings are approximate.

CAUTION
Be careful to strike the stem squarely. You can bend the stem if you do not strike it squarely.
PILOT-OPERATED (POPPET STYLE) CHECK VALVE TEST AND INSPECTION

Test

1. Remove poppet and poppet spring. Reinstall boss plug and test plow. If problem is corrected go to inspection.

Inspection

1. Strike boss plugs squarely with a hammer to facilitate removal.
2. Remove O-ring boss plug, spring and poppet.
3. Remove O-ring boss plug, spring and spool with O-ring. Use long/slender needle-nosed pliers to remove spool.
4. Inspect springs, poppet, spool, O-rings and poppet seat for wear, damage or contamination. Replace worn parts.
5. The valve manifold block has a pressed in steel poppet seat. Use a strong pencil magnet to push and pull on the seat. If the seat moves at all, replace the valve block. Never hammer on the seat or attempt to "coin" the poppet.
6. Re-oil O-rings, install spool fully into bore. Spool must insert smoothly.
7. Install poppet, springs and O-ring boss plugs. Torque O-ring boss plug to 60 in-lb.
INDIVIDUAL SOLENOID COIL TEST

1. Remove both wires from coil terminals.
2. Attach an ohmmeter across the coil terminals.
3. A reading of approximately 6.7 ohms indicates the coil is good. A good coil will draw approximately 1.5 amps.

SOLENOID CARTRIDGE VALVE INSPECTION

1. Remove coils from the solenoid cartridge valves and remove the cartridge valves from the manifold. Look for visible contamination or damaged seals. Check for stuck spools with a plastic, aluminum, or soft brass probe by pushing on the spring loaded internal spool from the end of the valve. The spool should move freely through its entire travel. Spool travel is approx. 0.070”.

NOTE: Using probe to move spool may shear contamination which was affecting spool movement.

2. Bench test the cartridge valve by installing a coil on the stem and applying 12V and ground. Watch through the side ports for internal spool travel.

If the cartridge valve spool is stuck or its travel is restricted, replace the cartridge. If the cartridge valve appears to be in good condition, clean it with parts cleaning solvent and dry with compressed air, being careful not to damage the seals. Check the spool travel again in case any internal contaminants were dislodged during cleaning.

Re-oil the cartridge valve seals and o-rings and reinstall the cartridge valve, torquing to 10 ft-lb. Install the coils and torque the retaining nuts to 4 ft-lb.

NOTE: If contamination is seen in more than one component, it can reasonably be assumed that the entire system is contaminated. In order to perform a proper repair, the entire hydraulic unit, including hoses and cylinders, must be disassembled and cleaned. The source of the contamination must be located and repaired before reassembly.
DRL applications require a DRL kit. DRL kit not shown.
VEHICLE HEADLAMP TEST – 9-PIN HARNESS

1. Verify correct harness and wire installation to relays and vehicle headlamps. See the Headlamp Test Diagram – 9-Pin Harness. The specific wiring diagram for the vehicle can be found in the plow installation instructions, or the manual Electrical Schematics Guide.

2. Turn ignition and headlight switch on.

3. Disconnect all harnesses at the front of the vehicle.

4. All bulbs must be good.

At each relay, is there 12V at terminal 30 with green (high beam) or yellow (low beam) wires?

YES

NO

Check vehicle output from headlight connector to plug-in harness. Repair vehicle system or open wires in plug-in harness.

Is there 12V at terminal 87a with red (high beam) or orange (low beam) wires?

YES

NO

Carefully disconnect the black/orange wire from terminal 85 of both relays. Is there now 12V at terminal 87a?

YES

NO

Replace relay.

Blue ground wire in plug-in harness is open. Repair wire or replace harness.

Unplug plug-in harness connectors at each vehicle headlamp. Is there 12V at the red wire (high beam) and orange wire (low beam)?

YES

NO

Red or orange wires open in plug-in harness. Repair wire or replace harness.

Black/orange wire in vehicle harness is shorted to ground. Repair wire.
PLOW HEADLAMP TEST – 9-PIN HARNESS

1. Verify correct harness and wire installation to the headlamp relays.
2. All bulbs must be good.
3. Connect all harnesses at the front of the vehicle.
4. Turn vehicle headlamp switch on. For vehicles with Daytime Running Lamps (DRLs), turn ignition on. DRL equipped vehicles have a pink wire instead of a brown wire on relay terminal 86.
5. Refer to the 9-Pin Electrical Schematic Headlamp Test Diagram – 9-Pin Harness, and Connector diagram. The specific wiring diagram for the vehicle can be found in the plow installation instructions, or the manual Electrical Schematics Guide.

At each headlamp relay, is there 12V at terminal 30 with green (high beam) or yellow (low beam) wires?

YES

Is there 12V at terminal 87? With white (high beam) or black (low beam) wires.

YES

Is there 12V at the black or white wires in the plow headlamp connectors at the bulb?

YES

Black/orange ground wire in plow harness is open. Repair wire or replace harness.

NO

At each headlamp relay, is there 12V at terminal 30 with green (high beam) or yellow (low beam) wires?

NO

Check vehicle output from headlamp connector to plug-in harness. Repair vehicle electrical system or open wires in plug-in harness.

NO

Is there 12V at each relay terminal 86 with brown or (DRL) pink wire?

YES

Is there 12V at the black or white wires in the plow headlamp connectors at the bulb?

YES

Black/orange ground wire in plow harness is open. Repair wire or replace harness.

NO

Is there 12V at each relay terminal 86 with brown or (DRL) pink wire?

NO

Attach a ground jumper wire to relay terminal 85 with black/orange wire. Is there now 12V at relay terminal 87?

YES

Plow lights are good.

NO

Replace headlamp relay. Do plow lights work?

YES

Black/orange ground wire in vehicle harness is open. Repair wire or replace harness.

NO

Black/orange ground wire in plow harness is open. Repair wire or replace harness.

Check brown wire connection to vehicle park lamp circuit or (DRL) pink wire fuse or connection to vehicle accessory wire or fusebox. Repair or replace open (DRL) pink or brown wire.

YES

Is there 12V at terminal 87? With white (high beam) or black (low beam) wires.

NO

Disconnect 9-pin connector. Attach ground jumper to relay terminal 85. Is there 12V at socket #6 (high beam, white wire) or socket #2 (low beam, black wire) on vehicle side?

YES

Remove jumper wire from relay. Disconnect 9-pin connector. Attach ground jumper wire to socket #5 on vehicle side. Is there 12V at socket #6 (high beam) or socket #2 (low beam)?

NO

Reconnect 9-Pin connector. Attach ground jumper to (-) motor terminal. Do plow lights come on?

YES

Black/orange ground wire in plow harness is open. Repair wire or replace harness.

NO

Black/orange wire in plow harness is open. Repair wire or replace harness.

Poor ground between battery and motor (-) terminal. Repair vehicle or plow (-) battery cable.

Corresponding wire is open in vehicle harness. Repair wire or replace harness.

Corresponding wire is open in plow harness. Repair wire or replace harness.

Vehicle Harness 9-Pin Connector

- Low Beam Headlamp
- Ground
- High Beam Headlamp
- Left Turn
- Right Turn
- Park

Lit. No. 27097
June 15, 2003
1. Verify plow park/turn (P/T) bulbs and contacts are good.

2. Turn parking lamps and ignition on.

3. Connect all harnesses at the front of the vehicle.

4. Refer to the Vehicle Harness 9- or 12-Pin Connector diagram.

### Do vehicle park lamps work?

| YES | Disconnect 9 or 12-pin connector. Is there 12V at socket #11 on the vehicle side? |
| NO | Repair vehicle electrical system. |

### Disconnect 9 or 12-pin connector.

| NO | Is the optional Park/Turn Relay Kit installed? (Vehicle harness brown wire connects to relay kit gray wire.) |
| YES | Brown wire is open in plow harness. Repair wire or replace harness. |

### Poor connection to vehicle circuit or open brown wire in vehicle harness. Repair wire or replace vehicle harness.

| YES | Go to Optional Park/Turn Relay Kit Test |

### Do vehicle turn signals work?

| YES | Disconnect 9 or 12-pin connector. Is there 12V at sockets #10 for right turn and #9 for left turn? |
| NO | Repair vehicle electrical system. |

### Disconnect 9 or 12-pin connector.

| NO | Is the optional Park/Turn Relay Kit installed? (Vehicle harness gray wire and purple wires connect to relay kit gray and purple wires.) |
| YES | Purple or gray wire is open in plow harness. Repair wire or replace harness. |

### Poor connection to vehicle circuit or open purple (right) or gray (left) wire in vehicle harness. Repair wire or replace harness.

| YES | Go to Optional Park/Turn Relay Kit Test |

### Poor ground connection between bulb and socket or black/orange ground wire is open in plow harness. Repair wire or replace harness.
OPTIONAL PARK/TURN RELAY KIT TEST

1. Turn signal applications use both gray and purple relay circuits.

2. Park lamp applications use gray relay circuit only. If gray relay circuit fails, purple relay circuit can be used instead.

3. Refer to the Optional Park/Turn Relay Kit schematic.

4. Verify that the relay kit red and black wires are connected to battery (+) and (−) terminals respectively.

5. Verify in-line 10 amp fuse in red wire is good.

6. Disconnect long and short gray and purple wires to isolate relay circuits.

**NOTE:** If the snowplow park/turn lamps are on when the vehicle park/turn lamps are off, replace the relay kit.

- **Apply 12V to long gray wire. Is there 12V at short gray wire?**
  - **NO**
    - Gray relay circuit failed. Use good purple relay circuit or replace relay kit.
  - **YES**
    - **Apply 12V to long purple wire. Is there 12V at short purple wire?**
      - **NO**
        - Purple relay circuit failed. Replace relay kit.
      - **YES**
        - Relay kit is OK. Check bullet connectors on vehicle park/turn circuits.
OPTIONAL PARK/TURN RELAY KIT SCHEMATICS

WIRED FOR PARK LAMPS

SEALED RELAY KIT

VEHICLE BATTERY

10 AMP FUSE

VEHICLE HARNESS WIRE

PUR

PUR

PURPLE RELAY CIRCUIT NOT USED

Gry

TO PARK/LAMP BULLET

WIRED FOR TURN SIGNALS

SEALED RELAY KIT

VEHICLE BATTERY

10 AMP FUSE

VEHICLE HARNESS WIRES

Gry

BRN

TO RIGHT TURN LAMP BULLET

TO LEFT TURN LAMP BULLET

PUR

PUR
1. Verify correct harness and wire installation to headlamp relays, vehicle headlamps, and vehicle headlamp connectors.

2. All bulbs must be good.

3. Disconnect all harnesses at the front of the vehicle.

4. Turn vehicle headlamp switch on. For vehicles with Daytime Running Lamps (DRL’s), turn ignition on. DRL equipped vehicles have a pink wire instead of a brown wire on relay terminal 86.

5. Verify power for both high and low beam and ground are present at the original vehicle headlamp connectors.

6. Refer to the Electrical Schematic – 12-Pin Harness, and the Headlamp Test Diagram – 12-Pin Harness. The specific wiring diagram for the vehicle can be found in the plow installation instructions, or the manual Electrical Schematics Guide.

* Repair wire or replace harness for all open or shorted wires.
VEHICLE HEADLAMP TEST – 12-PIN HARNESS – 3 RELAY SYSTEM ONLY

Is there ground at the Lt blue/white wire socket in the right connector and Dk blue/white wire socket in the left connector?

NO

Right side headlamp: Attach a ground jumper wire to terminal 87a with the Dk blue/white wire on the curb side relay. Does the headlamp work?

Left side headlamp: Attach a ground jumper wire to terminal 87a with the Lt blue/white wire on the driver side relay. Does the headlamp work?

NO

Dk blue/white or Lt blue/white wire in headlamp harness is open.

YES

Check for poor or corroded connections in the headlamp harness and at relays.

Left side headlamp: Attach a ground jumper wire to terminal 30 with the Lt blue/white wire on the driver side relay. Does the headlamp work?

Left side headlamp: Attach a ground jumper wire to terminal 30 with the Dk blue/white wire on the curb side relay. Does the headlamp work?

YES

Dk blue/white or Lt blue/white wire in headlamp harness is open.

NO

YES

Relays are activated. Black/orange wire in vehicle harness is shorted to ground.

Disconnect the black/orange wire from the relay. Does the headlamp work?

NO

Replace relay.

* Repair wire or replace harness for all open or shorted wires.
PLOW HEADLAMP TEST – 12-PIN HARNESS – 3 RELAY SYSTEM ONLY

1. Verify correct harness and wire installation to headlamp relays, vehicle headlamps, and vehicle headlamp connectors.

2. All bulbs must be good.

3. Connect all harnesses at the front of the vehicle.

4. Turn vehicle headlamp switch on. For vehicles with Daytime Running Lamps (DRL’s), turn ignition on. DRL equipped vehicles have a pink wire instead of a brown wire on relay terminal 86.

5. Verify power for both high and low beam and ground are present at the original vehicle headlamp connectors.

6. Refer to the Electrical Schematic – 12-Pin Harness, and the Headlamp Test Diagram – 12-Pin Harness. The specific wiring diagram for the vehicle can be found in the plow installation instructions, or the manual Electrical Schematics Guide.

Disconnect the 12-pin harness connector. Do the vehicle headlights turn on? NO

On the vehicle 12-pin harness connector, is there 12V at socket 6 (high beam) and sockets 2 and 7 (low beam)? NO

On the plow harness connector, attach a ground jumper wire to pin #8 and 12V to pin #2 (low beam) or pin #6 (high beam). Does the right side plow headlamp work for both high and low beam? NO

If no low beam: black wire in plow harness is open.
If no high beam: white wire is open.
If no high or low beam: Dk blue/orange wire is open.

On the vehicle 12-pin harness connector, is there 12V at socket 6 (high beam) and sockets 2 and 7 (low beam)? YES

On the plow 12-pin harness connector, attach a ground jumper wire to pin #12 and 12V to pin #7 (low beam) or pin #6 (high beam). Does the left side plow headlamp work for both high and low beam? YES

Green wire in headlamp harness is open.

Low beam: Open the connection between the yellow and orange or orange wire terminal of the headlamp harness and the black wire of the vehicle harness. Is there 12V at the yellow and orange or orange wire? NO

Either black wire (right headlamp) or black/white wire (left headlamp) in vehicle harness is open.

Yellow or orange wire in headlamp harness is open.

White wire in vehicle harness is open.

White wire in vehicle harness is open.

If no low beam: black/white wire in plow harness is open.
If no high beam: white wire is open.
If no high or low beam: Lt blue/orange wire is open.

High beam: Open the connection between the white wire of the vehicle harness and the green wire of the headlamp harness. Is there 12V at the green wire? NO

YES

YES

* Repair wire or replace harness for all open or shorted wires.
Brown or pink wire is open. Check brown wire connection to vehicle park lamp circuit or fuse in pink wire.

Dk blue wire in headlamp harness open.

Move ground jumper wire to terminal 30 with Dk blue wire at curb side relay. Does right plow headlamp work?

Lt blue wire in headlamp harness is open.

Remove ground jumpers. Is there 12V at terminal 86 with brown wire (pink wire for DRLs) at all relays?

Move ground jumper wire to terminal 30 with Lt blue wire at driver side relay. Does left plow headlamp work?

Lt blue/orange wire in vehicle harness is open.

Move ground jumper wire to terminal 30 with Dk blue wire at curb side relay. Does right plow headlamp work?

Lt blue/orange wire in vehicle harness is open.

Move ground jumper wire to terminal 30 with Lt blue wire at driver side relay. Does the left plow headlamp work?

Dk blue/orange wire in vehicle harness is open.

Remove ground jumper wires. Disconnect the 12 pin harness connector. Touch socket 5 of the vehicle harness connector with a ground jumper wire. Do the relays make a clicking sound indicating they are activating?

Black/orange ground wire in plow harness is open.

Black/orange ground wire in vehicle harness is open.

* Repair wire or replace harness for all open or shorted wires.
HEADLAMP TEST DIAGRAM – 12-PIN HARNESS – 3 RELAY SYSTEM ONLY (’98 AND OLDER VEHICLES)

NOTE: DRL applications require a DRL kit. DRL kit not shown.

RELAY PIN OUT
85 – COIL CONNECTION – GROUND FROM VEHICLE HARNESS PLUG.
86 – COIL CONNECTION – +12V FROM PARKING LIGHT TAP. (SEE NOTE BELOW)
30 – COMMON – +12V FROM THE HEADLIGHT SWITCH,
87a – NC (NORMALLY CLOSED) TO VEHICLE HEADLIGHTS, OPENS WHEN PARKING LIGHTS ARE ON.
87 – NO (NORMALLY OPEN) TO PLOW LIGHTS, CLOSES WHEN PARKING LIGHTS ARE ON.